Store-operated Ca2+ entry is exaggerated in fresh preglomerular vascular smooth muscle cells of SHR.

نویسندگان

  • Susan K Fellner
  • William J Arendshorst
چکیده

BACKGROUND Regulation of preglomerular vasomotor tone vessels ultimately control glomerular filtration rate, sodium reabsorption and systemic blood pressure. To gain insight into the complex renal hemodynamic factors that may result in hypertension, we studied calcium signaling pathways. METHODS Fresh, single, preglomerular vascular smooth muscle cells (VSMC) were isolated from 5- to 6-week-old SHR and WKY utilizing a magnetized microsphere/sieving technique. Cytosolic Ca2+ ([Ca2+]i) was measured with fura-2 ratiometric fluorescence. To examine store-operated calcium entry (SOC), VSMC were activated in calcium-free buffer containing nifedipine. To deplete the sarcoplasmic reticulum (SR) of Ca2+, vasopressin-1 receptor agonist [V1R; inositol trisphosphate (IP3)-mediated mobilization], ryanodine (non-IP3 induced mobilization), and cyclopiazonic acid (CPA; Ca2+-ATPase inhibition) were utilized. Addition of external calcium followed by quenching of the fura/Ca2+ signal with Mn2+ permitted assessment of divalent cation entry via SOC. RESULTS V1R caused greater mobilization in SHR than WKY (P < 0.01) as well as greater calcium entry (P < 0.001). Ryanodine and CPA both caused SR calcium depletion that was not statistically different between strains, but absolute calcium entry through SOC was more than double in SHR following either maneuver (P < 0.001). 2-Amino-ethoxybiphenyl borane (2-APB), an inhibitor not only of IP3 receptors, but also of SOC, blocked calcium entry in the ryanodine and CPA experiments independent of IP3. As well, Gd3+, a selective inhibitor of SOC, inhibited the Ca2+ response. We also studied L-channel calcium entry stimulated by V1R. The total calcium response was greater in SHR as was the absolute inhibition by nifedipine. As a percent of the total response, participation of L-type channels sensitive to nifedipine was about 45% in both strains of rat. CONCLUSION Utilizing three separate mechanisms to deplete the SR of Ca2+ in order to activate SOC, we show for the first time, that SOC is exaggerated in preglomerular VSMC of young SHR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capacitative calcium entry in smooth muscle cells from preglomerular vessels.

Calcium entry via voltage-gated L-type channels is responsible for at least half of the increase in cytosolic calcium ([Ca2+]i) in afferent arterioles following agonist stimulation. We sought the presence of capacitative calcium entry in fresh vascular smooth muscle cells (VSMC) derived from rat preglomerular vessels. [Ca2+]iwas measured using fura-2 ratiometric fluorescence. Vasopressin V1 rec...

متن کامل

Exaggerated Ca2+ signaling in preglomerular arteriolar smooth muscle cells of genetically hypertensive rats.

Experiments were conducted to gain insight into mechanisms responsible for exaggerated renal vascular reactivity to ANG II and vasopressin (AVP) in spontaneously hypertensive rats (SHR) during the development of hypertension. Cytosolic calcium concentration ([Ca2+]i) was measured by ratiometric fura 2 fluorescence and a microscope-based photometer. Vascular smooth muscle cells (SMC) from preglo...

متن کامل

Store-operated Ca2+ entry activates the CREB transcription factor in vascular smooth muscle.

Ca2+-regulated gene transcription is a critical component of arterial responses to injury, hypertension, and tumor-stimulated angiogenesis. The Ca2+/cAMP response element binding protein (CREB), a transcription factor that regulates expression of many genes, is activated by Ca2+-induced phosphorylation. Multiple Ca2+ entry pathways may contribute to CREB activation in vascular smooth muscle inc...

متن کامل

Role of Endothelium on Cyclopiazonic Acid-induced Vascular Contractions in Rat Aorta

Spacio-temporal changes of intracellular Ca2+ concentrations ([Ca2+]i) are known to play central role in numerous cellular processes such as muscle contraction, gene expression, development, proliferation and apoptosis1. While global increases in [Ca2+]i in vascular smooth muscle cells (VSMCs) elicit contraction2, 3, [Ca2+]i elevation in endothelial cells (ECs) causes vasorelaxation by triggeri...

متن کامل

The Complex Role of Store Operated Calcium Entry Pathways and Related Proteins in the Function of Cardiac, Skeletal and Vascular Smooth Muscle Cells

Cardiac, skeletal, and smooth muscle cells shared the common feature of contraction in response to different stimuli. Agonist-induced muscle's contraction is triggered by a cytosolic free Ca2+ concentration increase due to a rapid Ca2+ release from intracellular stores and a transmembrane Ca2+ influx, mainly through L-type Ca2+ channels. Compelling evidences have demonstrated that Ca2+ might al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kidney international

دوره 61 6  شماره 

صفحات  -

تاریخ انتشار 2002